10.17.6 problem 6

Internal problem ID [1421]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 7.8, Repeated Eigenvalues. page 436
Problem number : 6
Date solved : Monday, January 27, 2025 at 04:57:04 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{2} \left (t \right )+x_{3} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )+x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=x_{1} \left (t \right )+x_{2} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.029 (sec). Leaf size: 63

dsolve([diff(x__1(t),t)=0*x__1(t)+1*x__2(t)+1*x__3(t),diff(x__2(t),t)=1*x__1(t)+0*x__2(t)+1*x__3(t),diff(x__3(t),t)=1*x__1(t)+1*x__2(t)+0*x__3(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_2 \,{\mathrm e}^{2 t}+c_3 \,{\mathrm e}^{-t} \\ x_{2} \left (t \right ) &= c_2 \,{\mathrm e}^{2 t}+c_3 \,{\mathrm e}^{-t}+{\mathrm e}^{-t} c_1 \\ x_{3} \left (t \right ) &= c_2 \,{\mathrm e}^{2 t}-2 c_3 \,{\mathrm e}^{-t}-{\mathrm e}^{-t} c_1 \\ \end{align*}

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 124

DSolve[{D[ x1[t],t]==0*x1[t]+1*x2[t]+1*x3[t],D[ x2[t],t]==1*x1[t]+0*x2[t]+1*x3[t],D[ x3[t],t]==1*x1[t]+1*x2[t]+0*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{3} e^{-t} \left (c_1 \left (e^{3 t}+2\right )+(c_2+c_3) \left (e^{3 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{3} e^{-t} \left (c_1 \left (e^{3 t}-1\right )+c_2 \left (e^{3 t}+2\right )+c_3 \left (e^{3 t}-1\right )\right ) \\ \text {x3}(t)\to \frac {1}{3} e^{-t} \left (c_1 \left (e^{3 t}-1\right )+c_2 \left (e^{3 t}-1\right )+c_3 \left (e^{3 t}+2\right )\right ) \\ \end{align*}