10.17.11 problem 11

Internal problem ID [1426]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 7.8, Repeated Eigenvalues. page 436
Problem number : 11
Date solved : Monday, January 27, 2025 at 04:57:08 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-4 x_{1} \left (t \right )+x_{2} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=3 x_{1} \left (t \right )+6 x_{2} \left (t \right )+2 x_{3} \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = -1\\ x_{2} \left (0\right ) = 2\\ x_{3} \left (0\right ) = -30 \end{align*}

Solution by Maple

Time used: 0.044 (sec). Leaf size: 38

dsolve([diff(x__1(t),t) = x__1(t), diff(x__2(t),t) = -4*x__1(t)+x__2(t), diff(x__3(t),t) = 3*x__1(t)+6*x__2(t)+2*x__3(t), x__1(0) = -1, x__2(0) = 2, x__3(0) = -30], singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= -{\mathrm e}^{t} \\ x_{2} \left (t \right ) &= \left (4 t +2\right ) {\mathrm e}^{t} \\ x_{3} \left (t \right ) &= -24 t \,{\mathrm e}^{t}-33 \,{\mathrm e}^{t}+3 \,{\mathrm e}^{2 t} \\ \end{align*}

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 39

DSolve[{D[ x1[t],t]==1*x1[t]+0*x2[t]+0*x3[t],D[ x2[t],t]==-4*x1[t]+1*x2[t]+0*x3[t],D[ x3[t],t]==3*x1[t]+6*x2[t]+2*x3[t]},{x1[0]==-1,x2[0]==2,x3[0]==-30},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to -e^t \\ \text {x2}(t)\to 2 e^t (2 t+1) \\ \text {x3}(t)\to 3 e^t \left (-8 t+e^t-11\right ) \\ \end{align*}