9.7.5 problem problem 5

Internal problem ID [1046]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number : problem 5
Date solved : Tuesday, March 04, 2025 at 12:08:01 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=x^{2} y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 19
Order:=6; 
ode:=diff(y(x),x) = x^2*y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {x^{3}}{3}\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 15
ode=D[y[x],x]==x^2*y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{3}+1\right ) \]
Sympy. Time used: 0.648 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{1} x^{3}}{3} + O\left (x^{6}\right ) \]