9.7.16 problem problem 16

Internal problem ID [1057]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number : problem 16
Date solved : Thursday, March 13, 2025 at 03:53:36 PM
CAS classification : [_separable]

\begin{align*} 2 x y^{\prime }&=y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 14
Order:=6; 
ode:=2*x*diff(y(x),x) = y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \sqrt {x}+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 11
ode=2*x*D[y[x],x]==y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \sqrt {x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
ValueError : ODE 2*x*Derivative(y(x), x) - y(x) does not match hint 1st_power_series