10.19.13 problem 13

Internal problem ID [1454]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number : 13
Date solved : Monday, January 27, 2025 at 04:57:33 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )+x_{2} \left (t \right )-2\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-x_{2} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.018 (sec). Leaf size: 71

dsolve([diff(x__1(t),t)=1*x__1(t)+1*x__2(t)-2,diff(x__2(t),t)=1*x__1(t)-1*x__2(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{\sqrt {2}\, t} c_2 +{\mathrm e}^{-\sqrt {2}\, t} c_1 +1 \\ x_{2} \left (t \right ) &= \sqrt {2}\, {\mathrm e}^{\sqrt {2}\, t} c_2 -\sqrt {2}\, {\mathrm e}^{-\sqrt {2}\, t} c_1 -{\mathrm e}^{\sqrt {2}\, t} c_2 -{\mathrm e}^{-\sqrt {2}\, t} c_1 +1 \\ \end{align*}

Solution by Mathematica

Time used: 0.127 (sec). Leaf size: 160

DSolve[{D[ x1[t],t]==1*x1[t]+1*x2[t]-2,D[ x2[t],t]==1*x1[t]-1*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{4} e^{-\sqrt {2} t} \left (4 e^{\sqrt {2} t}+\left (\left (2+\sqrt {2}\right ) c_1+\sqrt {2} c_2\right ) e^{2 \sqrt {2} t}-\left (\left (\sqrt {2}-2\right ) c_1\right )-\sqrt {2} c_2\right ) \\ \text {x2}(t)\to \frac {1}{4} e^{-\sqrt {2} t} \left (4 e^{\sqrt {2} t}+\left (\sqrt {2} c_1-\left (\sqrt {2}-2\right ) c_2\right ) e^{2 \sqrt {2} t}-\sqrt {2} c_1+\left (2+\sqrt {2}\right ) c_2\right ) \\ \end{align*}