10.20.2 problem 2 part 1

Internal problem ID [1458]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 9.2, Autonomous Systems and Stability. page 517
Problem number : 2 part 1
Date solved : Monday, January 27, 2025 at 04:57:37 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-x \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 y \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 4\\ y \left (0\right ) = 2 \end{align*}

Solution by Maple

Time used: 0.012 (sec). Leaf size: 19

dsolve([diff(x(t),t) = -x(t), diff(y(t),t) = 2*y(t), x(0) = 4, y(0) = 2], singsol=all)
 
\begin{align*} x \left (t \right ) &= 4 \,{\mathrm e}^{-t} \\ y \left (t \right ) &= 2 \,{\mathrm e}^{2 t} \\ \end{align*}

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 22

DSolve[{D[x[t],t]==-1*x[t]+0*y[t],D[y[t],t]==0*x[t]+2*y[t]},{x[0]==4,y[0]==2},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to 4 e^{-t} \\ y(t)\to 2 e^{2 t} \\ \end{align*}