11.3.9 problem 16

Internal problem ID [1491]
Book : Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade
Section : Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255
Problem number : 16
Date solved : Monday, January 27, 2025 at 04:57:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{-t} \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.309 (sec). Leaf size: 24

dsolve([diff(y(t),t$2)-2*diff(y(t),t)+2*y(t)=exp(-t),y(0) = 0, D(y)(0) = 1],y(t), singsol=all)
 
\[ y = \frac {{\mathrm e}^{-t}}{5}+\frac {\left (-\cos \left (t \right )+7 \sin \left (t \right )\right ) {\mathrm e}^{t}}{5} \]

Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 29

DSolve[{D[y[t],{t,2}]-2*D[y[t],t]+2*y[t]==Exp[-t],{y[0]==0,Derivative[1][y][0] ==1}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \frac {1}{5} \left (e^{-t}+7 e^t \sin (t)-e^t \cos (t)\right ) \]