11.4.4 problem 4

Internal problem ID [1498]
Book : Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade
Section : Chapter 6.4, The Laplace Transform. Differential equations with discontinuous forcing functions. page 268
Problem number : 4
Date solved : Monday, January 27, 2025 at 04:58:03 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.441 (sec). Leaf size: 63

dsolve([diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=piecewise(0<=t and t<10,1,true,0),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
 
\[ y = \frac {\left (\left \{\begin {array}{cc} 1-2 \,{\mathrm e}^{-t}+{\mathrm e}^{-2 t} & t <10 \\ {\mathrm e}^{-20}-2 \,{\mathrm e}^{-10}+2 & t =10 \\ 2 \,{\mathrm e}^{10-t}-{\mathrm e}^{20-2 t}-2 \,{\mathrm e}^{-t}+{\mathrm e}^{-2 t} & 10<t \end {array}\right .\right )}{2} \]

Solution by Mathematica

Time used: 0.040 (sec). Leaf size: 61

DSolve[{D[y[t],{t,2}]+3*D[y[t],t]+2*y[t]==Piecewise[{{1,0<=t<10},{0,True}}],{y[0]==0,Derivative[1][y][0] ==0}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \begin {array}{cc} \{ & \begin {array}{cc} 0 & t\leq 0 \\ \frac {1}{2} e^{-2 t} \left (-1+e^t\right )^2 & 0<t\leq 10 \\ \frac {1}{2} e^{-2 t} \left (-1+e^{10}\right ) \left (-1-e^{10}+2 e^t\right ) & \text {True} \\ \end {array} \\ \end {array} \]