10.1.23 problem 23

Internal problem ID [1120]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.1. Page 40
Problem number : 23
Date solved : Tuesday, March 04, 2025 at 12:09:42 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} -2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=a \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 35
ode:=-2*y(t)+3*diff(y(t),t) = exp(-1/2*Pi*t); 
ic:=y(0) = a; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {\left (3 \pi a -2 \,{\mathrm e}^{t \left (-\frac {\pi }{2}-\frac {2}{3}\right )}+4 a +2\right ) {\mathrm e}^{\frac {2 t}{3}}}{3 \pi +4} \]
Mathematica. Time used: 0.088 (sec). Leaf size: 43
ode=-2*y[t]+3*D[y[t],t] == Exp[-1/2*Pi*t]; 
ic=y[0]==a; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {e^{2 t/3} \left ((4+3 \pi ) a-2 e^{-\frac {1}{6} (4+3 \pi ) t}+2\right )}{4+3 \pi } \]
Sympy. Time used: 0.242 (sec). Leaf size: 37
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*y(t) + 3*Derivative(y(t), t) - exp(-pi*t/2),0) 
ics = {y(0): a} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {\left (4 a + 3 \pi a + 2\right ) e^{\frac {2 t}{3}}}{4 + 3 \pi } - \frac {2 e^{- \frac {\pi t}{2}}}{4 + 3 \pi } \]