10.1.29 problem 29

Internal problem ID [1126]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.1. Page 40
Problem number : 29
Date solved : Tuesday, March 04, 2025 at 12:10:30 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} \frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 24
ode:=1/4*y(t)+diff(y(t),t) = 3+2*cos(2*t); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = 12+\frac {8 \cos \left (2 t \right )}{65}+\frac {64 \sin \left (2 t \right )}{65}-\frac {788 \,{\mathrm e}^{-\frac {t}{4}}}{65} \]
Mathematica. Time used: 0.14 (sec). Leaf size: 32
ode=1/4*y[t]+D[y[t],t] == 3+2*Cos[2*t]; 
ic=y[0]==0; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {4}{65} \left (-197 e^{-t/4}+16 \sin (2 t)+2 \cos (2 t)+195\right ) \]
Sympy. Time used: 0.553 (sec). Leaf size: 29
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t)/4 - 2*cos(2*t) + Derivative(y(t), t) - 3,0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {64 \sin {\left (2 t \right )}}{65} + \frac {8 \cos {\left (2 t \right )}}{65} + 12 - \frac {788 e^{- \frac {t}{4}}}{65} \]