Internal
problem
ID
[1206]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Section
2.6.
Page
100
Problem
number
:
14
Date
solved
:
Thursday, March 13, 2025 at 03:55:21 PM
CAS
classification
:
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=-1+9*x^2+y(x)+(x-4*y(x))*diff(y(x),x) = 0; ic:=y(1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=-1+9*x^2+y[x]+(x-4*y[x])*D[y[x],x] == 0; ic=y[1]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*x**2 + (x - 4*y(x))*Derivative(y(x), x) + y(x) - 1,0) ics = {y(1): 0} dsolve(ode,func=y(x),ics=ics)
Timed Out