12.5.34 problem 31

Internal problem ID [1658]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Transformation of Nonlinear Equations into Separable Equations. Section 2.4 Page 68
Problem number : 31
Date solved : Monday, January 27, 2025 at 05:19:13 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {x +2 y}{2 x +y} \end{align*}

Solution by Maple

Time used: 0.213 (sec). Leaf size: 267

dsolve(diff(y(x),x)=(x+2*y(x))/(2*x+y(x)),y(x), singsol=all)
 
\begin{align*} y &= \frac {x \left (\frac {c_1 \left (\left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{2}/{3}}+3\right )}{3 x \left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{1}/{3}}}+c_1^{2}\right )}{c_1^{2}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{2}/{3}}-6 x c_1 \left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{1}/{3}}-3 i \sqrt {3}+3}{6 \left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{1}/{3}} c_1} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{2}/{3}}+6 x c_1 \left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{1}/{3}}-3 i \sqrt {3}-3}{6 \left (27 c_1 x +3 \sqrt {3}\, \sqrt {27 c_1^{2} x^{2}-1}\right )^{{1}/{3}} c_1} \\ \end{align*}

Solution by Mathematica

Time used: 28.664 (sec). Leaf size: 382

DSolve[D[y[x],x]==(x+2*y[x])/(2*x+y[x]),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{\sqrt {3} \sqrt {27 e^{4 c_1} x^2+e^{6 c_1}}-9 e^{2 c_1} x}}{3^{2/3}}-\frac {e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{\sqrt {3} \sqrt {27 e^{4 c_1} x^2+e^{6 c_1}}-9 e^{2 c_1} x}}+x \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {3} \sqrt {27 e^{4 c_1} x^2+e^{6 c_1}}-9 e^{2 c_1} x}}{2\ 3^{2/3}}+\frac {\left (1+i \sqrt {3}\right ) e^{2 c_1}}{2 \sqrt [3]{3} \sqrt [3]{\sqrt {3} \sqrt {27 e^{4 c_1} x^2+e^{6 c_1}}-9 e^{2 c_1} x}}+x \\ y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {3} \sqrt {27 e^{4 c_1} x^2+e^{6 c_1}}-9 e^{2 c_1} x}}{2\ 3^{2/3}}+\frac {\left (1-i \sqrt {3}\right ) e^{2 c_1}}{2 \sqrt [3]{3} \sqrt [3]{\sqrt {3} \sqrt {27 e^{4 c_1} x^2+e^{6 c_1}}-9 e^{2 c_1} x}}+x \\ \end{align*}