Internal
problem
ID
[1664]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
37(a)
Date
solved
:
Monday, January 27, 2025 at 05:22:07 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} y^{\prime }&=\frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \end{align*}
Time used: 0.020 (sec). Leaf size: 43
\[
y = \operatorname {RootOf}\left (\textit {\_Z}^{4}+c_1 x +16+\left (-3 c_1 x -32\right ) \textit {\_Z} +\left (3 c_1 x +24\right ) \textit {\_Z}^{2}+\left (-c_1 x -8\right ) \textit {\_Z}^{3}\right ) x
\]
Time used: 60.176 (sec). Leaf size: 1913
\begin{align*}
y(x)\to \frac {1}{12} \left (-\sqrt {9 e^{2 c_1} x^4+6\ 2^{2/3} \sqrt [3]{3 \sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+27 e^{2 c_1} x^8}+24 e^{c_1} x^3 \left (-3+\frac {2 \sqrt [3]{2} 3^{2/3} x^2}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}-6 \sqrt {\frac {1}{2} x^2 \left (-8+e^{c_1} x\right ){}^2+4 x^2 \left (-8+e^{c_1} x\right )-\frac {\sqrt [3]{27 e^{2 c_1} x^8+\sqrt {729 e^{4 c_1} x^{16}-6912 e^{3 c_1} x^{15}}}}{3 \sqrt [3]{2}}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}+\frac {e^{c_1} x^4 \left (e^{2 c_1} x^2-12 e^{c_1} x+24\right )}{2 \sqrt {e^{2 c_1} x^4+2 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}+e^{c_1} \left (-8 x^3+\frac {16 \sqrt [3]{\frac {2}{3}} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}}}-3 x \left (-8+e^{c_1} x\right )\right ) \\
y(x)\to \frac {1}{12} \left (-\sqrt {9 e^{2 c_1} x^4+6\ 2^{2/3} \sqrt [3]{3 \sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+27 e^{2 c_1} x^8}+24 e^{c_1} x^3 \left (-3+\frac {2 \sqrt [3]{2} 3^{2/3} x^2}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}+6 \sqrt {\frac {1}{2} x^2 \left (-8+e^{c_1} x\right ){}^2+4 x^2 \left (-8+e^{c_1} x\right )-\frac {\sqrt [3]{27 e^{2 c_1} x^8+\sqrt {729 e^{4 c_1} x^{16}-6912 e^{3 c_1} x^{15}}}}{3 \sqrt [3]{2}}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}+\frac {e^{c_1} x^4 \left (e^{2 c_1} x^2-12 e^{c_1} x+24\right )}{2 \sqrt {e^{2 c_1} x^4+2 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}+e^{c_1} \left (-8 x^3+\frac {16 \sqrt [3]{\frac {2}{3}} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}}}-3 x \left (-8+e^{c_1} x\right )\right ) \\
y(x)\to \frac {1}{12} \left (\sqrt {9 e^{2 c_1} x^4+6\ 2^{2/3} \sqrt [3]{3 \sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+27 e^{2 c_1} x^8}+24 e^{c_1} x^3 \left (-3+\frac {2 \sqrt [3]{2} 3^{2/3} x^2}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}-6 \sqrt {\frac {1}{2} x^2 \left (-8+e^{c_1} x\right ){}^2+4 x^2 \left (-8+e^{c_1} x\right )-\frac {\sqrt [3]{27 e^{2 c_1} x^8+\sqrt {729 e^{4 c_1} x^{16}-6912 e^{3 c_1} x^{15}}}}{3 \sqrt [3]{2}}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}-\frac {e^{c_1} x^4 \left (e^{2 c_1} x^2-12 e^{c_1} x+24\right )}{2 \sqrt {e^{2 c_1} x^4+2 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}+e^{c_1} \left (-8 x^3+\frac {16 \sqrt [3]{\frac {2}{3}} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}}}-3 x \left (-8+e^{c_1} x\right )\right ) \\
y(x)\to \frac {1}{12} \left (\sqrt {9 e^{2 c_1} x^4+6\ 2^{2/3} \sqrt [3]{3 \sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+27 e^{2 c_1} x^8}+24 e^{c_1} x^3 \left (-3+\frac {2 \sqrt [3]{2} 3^{2/3} x^2}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}+6 \sqrt {\frac {1}{2} x^2 \left (-8+e^{c_1} x\right ){}^2+4 x^2 \left (-8+e^{c_1} x\right )-\frac {\sqrt [3]{27 e^{2 c_1} x^8+\sqrt {729 e^{4 c_1} x^{16}-6912 e^{3 c_1} x^{15}}}}{3 \sqrt [3]{2}}-\frac {4 \sqrt [3]{\frac {2}{3}} e^{c_1} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}-\frac {e^{c_1} x^4 \left (e^{2 c_1} x^2-12 e^{c_1} x+24\right )}{2 \sqrt {e^{2 c_1} x^4+2 \left (\frac {2}{3}\right )^{2/3} \sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}+e^{c_1} \left (-8 x^3+\frac {16 \sqrt [3]{\frac {2}{3}} x^5}{\sqrt [3]{\sqrt {3} \sqrt {e^{3 c_1} x^{15} \left (-256+27 e^{c_1} x\right )}+9 e^{2 c_1} x^8}}\right )}}}-3 x \left (-8+e^{c_1} x\right )\right ) \\
\end{align*}