Internal
problem
ID
[1285]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
3,
Second
order
linear
equations,
3.3
Complex
Roots
of
the
Characteristic
Equation
,
page
164
Problem
number
:
19
Date
solved
:
Tuesday, March 04, 2025 at 12:27:48 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+5*y(x) = 0; ic:=y(1/2*Pi) = 0, D(y)(1/2*Pi) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+5*y[x]==0; ic={y[Pi/2]==0,Derivative[1][y][Pi/2]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(5*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(pi/2): 0, Subs(Derivative(y(x), x), x, pi/2): 2} dsolve(ode,func=y(x),ics=ics)