12.6.17 problem 17

Internal problem ID [1696]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number : 17
Date solved : Monday, January 27, 2025 at 05:29:46 AM
CAS classification : [[_Abel, `2nd type`, `class B`]]

\begin{align*} 3 x^{2} \cos \left (x \right ) y-x^{3} y \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

dsolve((3*x^2*cos(x)*y(x)-x^3*y(x)*sin(x)+4*x)+(8*y(x)-x^4*sin(x)*y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[(3*x^2*Cos[x]*y[x]-x^3*y[x]*Sin[x]+4*x)+(8*y[x]-x^4*Sin[x]*y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved