10.9.17 problem 23

Internal problem ID [1319]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number : 23
Date solved : Tuesday, March 04, 2025 at 12:29:07 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=t^{2} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=t^2*diff(diff(y(t),t),t)-4*t*diff(y(t),t)+6*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = t^{2} \left (c_1 t +c_2 \right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 16
ode=t^2*D[y[t],{t,2}]-4*t*D[y[t],t]+6*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to t^2 (c_2 t+c_1) \]
Sympy. Time used: 0.155 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) - 4*t*Derivative(y(t), t) + 6*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t^{2} \left (C_{1} + C_{2} t\right ) \]