10.9.28 problem 43

Internal problem ID [1330]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number : 43
Date solved : Tuesday, March 04, 2025 at 12:29:16 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=t^2*diff(diff(y(t),t),t)+3*t*diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {c_2 \ln \left (t \right )+c_1}{t} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 17
ode=t^2*D[y[t],{t,2}]+3*t*D[y[t],t]+y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {c_2 \log (t)+c_1}{t} \]
Sympy. Time used: 0.155 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) + 3*t*Derivative(y(t), t) + y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1} + C_{2} \log {\left (t \right )}}{t} \]