12.7.9 problem 9

Internal problem ID [1719]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6 Page 91
Problem number : 9
Date solved : Monday, January 27, 2025 at 05:32:28 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} 6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 24

dsolve((6*x*y(x)^2+2*y(x))+(12*x^2*y(x)+6*x+3)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ 3 x^{2} y^{4}+\left (2 x +1\right ) y^{3}+c_1 = 0 \]

Solution by Mathematica

Time used: 61.558 (sec). Leaf size: 1544

DSolve[(6*x*y[x]^2+2*y[x])+(12*x^2*y[x]+6*x+3)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {x^2 \left (-\sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}\right )+\sqrt {2} x^2 \sqrt {\frac {24 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}-\frac {3\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}-\frac {(2 x+1)^3}{x^6 \sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}}}+2 x+1}{12 x^2} \\ y(x)\to \frac {x^2 \sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}+\sqrt {2} x^2 \sqrt {\frac {24 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}-\frac {3\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}-\frac {(2 x+1)^3}{x^6 \sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}}}-2 x-1}{12 x^2} \\ y(x)\to \frac {1}{12} \left (-\frac {2 x+1}{x^2}-\sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}-\sqrt {2} \sqrt {\frac {24 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}-\frac {3\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}+\frac {(2 x+1)^3}{x^6 \sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}}}\right ) \\ y(x)\to -\frac {x^2 \sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}-\sqrt {2} x^2 \sqrt {\frac {24 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}-\frac {3\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}+\frac {(2 x+1)^3}{x^6 \sqrt {-\frac {48 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}+\frac {(2 x+1)^2}{x^4}+\frac {6\ 2^{2/3} \sqrt [3]{\sqrt {c_1{}^2 \left ((2 x+1)^4+256 c_1 x^6\right )}-c_1 (2 x+1)^2}}{x^2}}}}+2 x+1}{12 x^2} \\ \end{align*}