Internal
problem
ID
[1721]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Exact
equations.
Integrating
factors.
Section
2.6
Page
91
Problem
number
:
11
Date
solved
:
Monday, January 27, 2025 at 05:32:31 AM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} 12 x^{3} y+24 x^{2} y^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime }&=0 \end{align*}
Time used: 0.004 (sec). Leaf size: 27
Time used: 61.712 (sec). Leaf size: 1733
\begin{align*}
y(x)\to -\frac {3 x^4}{32 x^3+4}+\frac {1}{2} \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}-\frac {1}{2} \sqrt {\frac {9 x^8}{2 \left (8 x^3+1\right )^2}-\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}+\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}-\frac {27 x^{12}}{4 \left (8 x^3+1\right )^3 \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}}} \\
y(x)\to -\frac {3 x^4}{32 x^3+4}+\frac {1}{2} \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}+\frac {1}{2} \sqrt {\frac {9 x^8}{2 \left (8 x^3+1\right )^2}-\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}+\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}-\frac {27 x^{12}}{4 \left (8 x^3+1\right )^3 \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}}} \\
y(x)\to -\frac {3 x^4}{32 x^3+4}-\frac {1}{2} \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}-\frac {1}{2} \sqrt {\frac {9 x^8}{2 \left (8 x^3+1\right )^2}-\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}+\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}+\frac {27 x^{12}}{4 \left (8 x^3+1\right )^3 \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}}} \\
y(x)\to -\frac {3 x^4}{32 x^3+4}-\frac {1}{2} \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}+\frac {1}{2} \sqrt {\frac {9 x^8}{2 \left (8 x^3+1\right )^2}-\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}+\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}+\frac {27 x^{12}}{4 \left (8 x^3+1\right )^3 \sqrt {\frac {9 x^8}{4 \left (8 x^3+1\right )^2}+\frac {\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}{3 \sqrt [3]{2} \left (8 x^3+1\right )}-\frac {4 \sqrt [3]{2} c_1}{\sqrt [3]{\sqrt {59049 c_1{}^2 x^{16}+6912 c_1{}^3 \left (8 x^3+1\right )^3}-243 c_1 x^8}}}}} \\
\end{align*}