12.7.25 problem 26

Internal problem ID [1735]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6 Page 91
Problem number : 26
Date solved : Monday, January 27, 2025 at 05:33:49 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 12 y x +6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.041 (sec). Leaf size: 35

dsolve((12*x*y(x)+6*y(x)^3)+(9*x^2+10*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ \ln \left (x \right )-c_1 +\frac {2 \ln \left (\frac {2 y^{2}+3 x}{x}\right )}{11}+\frac {6 \ln \left (\frac {y}{\sqrt {x}}\right )}{11} = 0 \]

Solution by Mathematica

Time used: 7.090 (sec). Leaf size: 151

DSolve[(12*x*y[x]+6*y[x]^3)+(9*x^2+10*x*y[x]^2)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {Root}\left [2 \text {$\#$1}^5 x^3+3 \text {$\#$1}^3 x^4-c_1\&,1\right ] \\ y(x)\to \text {Root}\left [2 \text {$\#$1}^5 x^3+3 \text {$\#$1}^3 x^4-c_1\&,2\right ] \\ y(x)\to \text {Root}\left [2 \text {$\#$1}^5 x^3+3 \text {$\#$1}^3 x^4-c_1\&,3\right ] \\ y(x)\to \text {Root}\left [2 \text {$\#$1}^5 x^3+3 \text {$\#$1}^3 x^4-c_1\&,4\right ] \\ y(x)\to \text {Root}\left [2 \text {$\#$1}^5 x^3+3 \text {$\#$1}^3 x^4-c_1\&,5\right ] \\ \end{align*}