Internal
problem
ID
[1391]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
5.3,
Series
Solutions
Near
an
Ordinary
Point,
Part
II.
page
269
Problem
number
:
6.
case
\(x_0=-4\)
Date
solved
:
Tuesday, March 04, 2025 at 12:35:03 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^2-2*x-3)*diff(diff(y(x),x),x)+x*diff(y(x),x)+4*y(x) = 0; dsolve(ode,y(x),type='series',x=-4);
ode=(x^2-2*x-3)*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-4,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (x**2 - 2*x - 3)*Derivative(y(x), (x, 2)) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-4,n=6)