Internal
problem
ID
[1395]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
5.3,
Series
Solutions
Near
an
Ordinary
Point,
Part
II.
page
269
Problem
number
:
10
Date
solved
:
Tuesday, March 04, 2025 at 12:35:08 PM
CAS
classification
:
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=(-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+alpha^2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]+\[Alpha]^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") y = Function("y") ode = Eq(Alpha**2*y(x) - x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)