12.9.21 problem 21

Internal problem ID [1777]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number : 21
Date solved : Monday, January 27, 2025 at 05:34:44 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 4 x y^{\prime \prime }+2 y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\sin \left (\sqrt {x}\right ) \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 17

dsolve([4*x*diff(y(x),x$2)+2*diff(y(x),x)+y(x)=0,sin(sqrt(x))],singsol=all)
 
\[ y = c_1 \sin \left (\sqrt {x}\right )+c_2 \cos \left (\sqrt {x}\right ) \]

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 24

DSolve[4*x*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \cos \left (\sqrt {x}\right )+c_2 \sin \left (\sqrt {x}\right ) \]