Internal
problem
ID
[1400]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
7.5,
Homogeneous
Linear
Systems
with
Constant
Coefficients.
page
407
Problem
number
:
30
Date
solved
:
Tuesday, March 04, 2025 at 12:35:12 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -1/10*x__1(t)+3/40*x__2(t), diff(x__2(t),t) = 1/10*x__1(t)-1/5*x__2(t)]; ic:=x__1(0) = -17x__2(0) = -21; dsolve([ode,ic]);
ode={D[ x1[t],t]==-1/10*x1[t]+3/40*x2[t],D[ x2[t],t]==1/10*x1[t]-1/5*x2[t]}; ic={x1[0]==-17,x2[0]==-21}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(x__1(t)/10 - 3*x__2(t)/40 + Derivative(x__1(t), t),0),Eq(-x__1(t)/10 + x__2(t)/5 + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)