12.9.28 problem 28

Internal problem ID [1784]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number : 28
Date solved : Monday, January 27, 2025 at 05:34:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\frac {1}{x} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 17

dsolve([(2*x+1)*x*diff(y(x),x$2)-2*(2*x^2-1)*diff(y(x),x)-4*(x+1)*y(x)=0,1/x],singsol=all)
 
\[ y = \frac {c_2 \,{\mathrm e}^{2 x} x +c_1}{x} \]

Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 28

DSolve[(2*x+1)*x*D[y[x],{x,2}]-2*(2*x^2-1)*D[y[x],x]-4*(x+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_2 e^{2 x+1} x+c_1}{\sqrt {e} x} \]