10.16.8 problem 8

Internal problem ID [1408]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 7.6, Complex Eigenvalues. page 417
Problem number : 8
Date solved : Tuesday, March 04, 2025 at 12:35:21 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-3 x_{1} \left (t \right )+2 x_{3} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-x_{2} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=-2 x_{1} \left (t \right )-x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.036 (sec). Leaf size: 145
ode:=[diff(x__1(t),t) = -3*x__1(t)+2*x__3(t), diff(x__2(t),t) = x__1(t)-x__2(t), diff(x__3(t),t) = -2*x__1(t)-x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{-2 t}+c_2 \,{\mathrm e}^{-t} \sin \left (\sqrt {2}\, t \right )+c_3 \,{\mathrm e}^{-t} \cos \left (\sqrt {2}\, t \right ) \\ x_{2} \left (t \right ) &= -c_1 \,{\mathrm e}^{-2 t}-\frac {c_2 \,{\mathrm e}^{-t} \sqrt {2}\, \cos \left (\sqrt {2}\, t \right )}{2}+\frac {c_3 \,{\mathrm e}^{-t} \sqrt {2}\, \sin \left (\sqrt {2}\, t \right )}{2} \\ x_{3} \left (t \right ) &= \frac {c_1 \,{\mathrm e}^{-2 t}}{2}+c_2 \,{\mathrm e}^{-t} \sin \left (\sqrt {2}\, t \right )+\frac {c_2 \,{\mathrm e}^{-t} \sqrt {2}\, \cos \left (\sqrt {2}\, t \right )}{2}+c_3 \,{\mathrm e}^{-t} \cos \left (\sqrt {2}\, t \right )-\frac {c_3 \,{\mathrm e}^{-t} \sqrt {2}\, \sin \left (\sqrt {2}\, t \right )}{2} \\ \end{align*}
Mathematica. Time used: 0.033 (sec). Leaf size: 235
ode={D[ x1[t],t]==-3*x1[t]+0*x2[t]+2*x3[t],D[ x2[t],t]==1*x1[t]-1*x2[t]-0*x3[t],D[ x3[t],t]==-2*x1[t]-1*x2[t]+0*x3[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{3} e^{-2 t} \left ((c_1+2 (c_2+c_3)) e^t \cos \left (\sqrt {2} t\right )-\sqrt {2} (2 c_1+c_2-2 c_3) e^t \sin \left (\sqrt {2} t\right )+2 (c_1-c_2-c_3)\right ) \\ \text {x2}(t)\to \frac {1}{6} e^{-2 t} \left (2 (2 c_1+c_2-2 c_3) e^t \cos \left (\sqrt {2} t\right )+\sqrt {2} (c_1+2 (c_2+c_3)) e^t \sin \left (\sqrt {2} t\right )+4 (-c_1+c_2+c_3)\right ) \\ \text {x3}(t)\to \frac {1}{6} e^{-2 t} \left (-2 (c_1-c_2-4 c_3) e^t \cos \left (\sqrt {2} t\right )-\sqrt {2} (5 c_1+4 c_2-2 c_3) e^t \sin \left (\sqrt {2} t\right )+2 (c_1-c_2-c_3)\right ) \\ \end{align*}
Sympy. Time used: 0.293 (sec). Leaf size: 155
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
x__3 = Function("x__3") 
ode=[Eq(3*x__1(t) - 2*x__3(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + x__2(t) + Derivative(x__2(t), t),0),Eq(2*x__1(t) + x__2(t) + Derivative(x__3(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = 2 C_{3} e^{- 2 t} + \left (\frac {2 C_{1}}{3} + \frac {\sqrt {2} C_{2}}{3}\right ) e^{- t} \cos {\left (\sqrt {2} t \right )} + \left (\frac {\sqrt {2} C_{1}}{3} - \frac {2 C_{2}}{3}\right ) e^{- t} \sin {\left (\sqrt {2} t \right )}, \ x^{2}{\left (t \right )} = - 2 C_{3} e^{- 2 t} - \left (\frac {C_{1}}{3} - \frac {\sqrt {2} C_{2}}{3}\right ) e^{- t} \cos {\left (\sqrt {2} t \right )} + \left (\frac {\sqrt {2} C_{1}}{3} + \frac {C_{2}}{3}\right ) e^{- t} \sin {\left (\sqrt {2} t \right )}, \ x^{3}{\left (t \right )} = C_{1} e^{- t} \cos {\left (\sqrt {2} t \right )} - C_{2} e^{- t} \sin {\left (\sqrt {2} t \right )} + C_{3} e^{- 2 t}\right ] \]