10.18.7 problem 7

Internal problem ID [1434]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number : 7
Date solved : Tuesday, March 04, 2025 at 12:35:50 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{t}\\ \frac {d}{d t}x_{2} \left (t \right )&=4 x_{1} \left (t \right )+x_{2} \left (t \right )-{\mathrm e}^{t} \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 43
ode:=[diff(x__1(t),t) = x__1(t)+x__2(t)+2*exp(t), diff(x__2(t),t) = 4*x__1(t)+x__2(t)-exp(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_2 \,{\mathrm e}^{3 t}+{\mathrm e}^{-t} c_1 +\frac {{\mathrm e}^{t}}{4} \\ x_{2} \left (t \right ) &= 2 c_2 \,{\mathrm e}^{3 t}-2 \,{\mathrm e}^{-t} c_1 -2 \,{\mathrm e}^{t} \\ \end{align*}
Mathematica. Time used: 0.049 (sec). Leaf size: 80
ode={D[ x1[t],t]==1*x1[t]+1*x2[t]+2*Exp[t],D[ x2[t],t]==4*x1[t]+1*x2[t]-Exp[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{4} e^{-t} \left (e^{2 t}+(2 c_1+c_2) e^{4 t}+2 c_1-c_2\right ) \\ \text {x2}(t)\to \frac {1}{2} e^{-t} \left (-4 e^{2 t}+(2 c_1+c_2) e^{4 t}-2 c_1+c_2\right ) \\ \end{align*}
Sympy. Time used: 0.155 (sec). Leaf size: 41
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-x__1(t) - x__2(t) - 2*exp(t) + Derivative(x__1(t), t),0),Eq(-4*x__1(t) - x__2(t) + exp(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \frac {C_{1} e^{- t}}{2} + \frac {C_{2} e^{3 t}}{2} + \frac {e^{t}}{4}, \ x^{2}{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{3 t} - 2 e^{t}\right ] \]