Internal
problem
ID
[1436]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
7.9,
Nonhomogeneous
Linear
Systems.
page
447
Problem
number
:
9
Date
solved
:
Tuesday, March 04, 2025 at 12:35:52 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -5/4*x__1(t)+3/4*x__2(t)+2*t, diff(x__2(t),t) = 3/4*x__1(t)-5/4*x__2(t)+exp(t)]; dsolve(ode);
ode={D[ x1[t],t]==-5/4*x1[t]+3/4*x2[t]+2*t,D[ x2[t],t]==3/4*x1[t]-5/4*x2[t]+Exp[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-2*t + 5*x__1(t)/4 - 3*x__2(t)/4 + Derivative(x__1(t), t),0),Eq(-3*x__1(t)/4 + 5*x__2(t)/4 - exp(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)