12.11.15 problem 26

Internal problem ID [1854]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number : 26
Date solved : Monday, January 27, 2025 at 05:37:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 45

Order:=6; 
dsolve(x^2*(2+x^2)*diff(y(x),x$2)+2*x*(x^2+5)*diff(y(x),x)+2*(3-x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \left (1+\frac {1}{8} x^{2}+\operatorname {O}\left (x^{6}\right )\right )}{x}+\frac {c_2 \left (\ln \left (x \right ) \left (2 x^{2}+\frac {1}{4} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2-\frac {3}{2} x^{2}-\frac {1}{4} x^{4}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x^{3}} \]

Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 51

AsymptoticDSolveValue[x^2*(2+x^2)*D[y[x],{x,2}]+2*x*(x^2+5)*D[y[x],x]+2*(3-x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^4+7 x^2+4}{4 x^3}-\frac {\left (x^2+8\right ) \log (x)}{8 x}\right )+c_2 \left (\frac {x}{8}+\frac {1}{x}\right ) \]