12.12.1 problem 1

Internal problem ID [1855]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 1
Date solved : Monday, January 27, 2025 at 05:37:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+6 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 39

Order:=6; 
dsolve((1+x^2)*diff(y(x),x$2)+6*x*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (5 x^{4}-3 x^{2}+1\right ) y \left (0\right )+\left (3 x^{5}-2 x^{3}+x \right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 34

AsymptoticDSolveValue[(1+x^2)*D[y[x],{x,2}]+6*x*D[y[x],x]+6*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (3 x^5-2 x^3+x\right )+c_1 \left (5 x^4-3 x^2+1\right ) \]