12.12.3 problem 3

Internal problem ID [1857]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 3
Date solved : Monday, January 27, 2025 at 05:37:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+20 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 39

Order:=6; 
dsolve((1+x^2)*diff(y(x),x$2)-8*x*diff(y(x),x)+20*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (5 x^{4}-10 x^{2}+1\right ) y \left (0\right )+\left (x -2 x^{3}+\frac {1}{5} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 36

AsymptoticDSolveValue[(1+x^2)*D[y[x],{x,2}]-8*x*D[y[x],x]+20*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{5}-2 x^3+x\right )+c_1 \left (5 x^4-10 x^2+1\right ) \]