12.13.4 problem 4

Internal problem ID [1895]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number : 4
Date solved : Monday, January 27, 2025 at 05:37:59 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 18

Order:=6; 
dsolve([(1+x+3*x^2)*diff(y(x),x$2)+(2+15*x)*diff(y(x),x)+12*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);
 
\[ y = x -x^{2}-\frac {7}{2} x^{3}+\frac {15}{2} x^{4}+\frac {45}{8} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 31

AsymptoticDSolveValue[{(1+x+3*x^2)*D[y[x],{x,2}]+(2+15*x)*D[y[x],x]+12*y[x]==0,{y[0]==0,Derivative[1][y][0] ==1}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {45 x^5}{8}+\frac {15 x^4}{2}-\frac {7 x^3}{2}-x^2+x \]