12.13.27 problem 31(a)

Internal problem ID [1918]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number : 31(a)
Date solved : Monday, January 27, 2025 at 05:38:23 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (2 x^{2}+3 x +1\right ) y^{\prime \prime }+\left (6+8 x \right ) y^{\prime }+4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 59

Order:=6; 
dsolve((1+3*x+2*x^2)*diff(y(x),x$2)+(6+8*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (30 x^{5}-14 x^{4}+6 x^{3}-2 x^{2}+1\right ) y \left (0\right )+\left (31 x^{5}-15 x^{4}+7 x^{3}-3 x^{2}+x \right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 54

AsymptoticDSolveValue[(1+3*x+2*x^2)*D[y[x],{x,2}]+(6+8*x)*D[y[x],x]+4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (30 x^5-14 x^4+6 x^3-2 x^2+1\right )+c_2 \left (31 x^5-15 x^4+7 x^3-3 x^2+x\right ) \]