12.14.33 problem 35

Internal problem ID [1974]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 35
Date solved : Monday, January 27, 2025 at 05:39:29 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 33

Order:=6; 
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-2*x*(2-x^2)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{4} \left (1-2 x^{2}+3 x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 x \left (12+12 x^{2}-36 x^{4}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 34

AsymptoticDSolveValue[x^2*(1+x^2)*D[y[x],{x,2}]-2*x*(2-x^2)*D[y[x],x]+4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-3 x^5+x^3+x\right )+c_2 \left (3 x^8-2 x^6+x^4\right ) \]