12.14.44 problem 46

Internal problem ID [1985]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 46
Date solved : Monday, January 27, 2025 at 05:39:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 36

Order:=6; 
dsolve(9*x^2*diff(y(x),x$2)+3*x*(3+x^2)*diff(y(x),x)-(1-5*x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_2 \,x^{{2}/{3}} \left (1-\frac {1}{8} x^{2}+\frac {1}{112} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_1 \left (1-\frac {1}{6} x^{2}+\frac {1}{72} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{{1}/{3}}} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 52

AsymptoticDSolveValue[9*x^2*D[y[x],{x,2}]+3*x*(3+x^2)*D[y[x],x]-(1-5*x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt [3]{x} \left (\frac {x^4}{112}-\frac {x^2}{8}+1\right )+\frac {c_2 \left (\frac {x^4}{72}-\frac {x^2}{6}+1\right )}{\sqrt [3]{x}} \]