12.14.48 problem 50

Internal problem ID [1989]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 50
Date solved : Monday, January 27, 2025 at 05:39:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 34

Order:=6; 
dsolve(4*x^2*(1+x^2)*diff(y(x),x$2)+4*x*(1+6*x^2)*diff(y(x),x)-(1-25*x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_1 x \left (1-\frac {3}{2} x^{2}+\frac {15}{8} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1-2 x^{2}+\frac {8}{3} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 56

AsymptoticDSolveValue[4*x^2*(1+x^2)*D[y[x],{x,2}]+4*x*(1+6*x^2)*D[y[x],x]-(1-25*x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {8 x^{7/2}}{3}-2 x^{3/2}+\frac {1}{\sqrt {x}}\right )+c_2 \left (\frac {15 x^{9/2}}{8}-\frac {3 x^{5/2}}{2}+\sqrt {x}\right ) \]