12.14.54 problem 65

Internal problem ID [1995]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 65
Date solved : Monday, January 27, 2025 at 05:39:56 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 32

Order:=6; 
dsolve(8*x^2*(2-x^2)*diff(y(x),x$2)+2*x*(10-21*x^2)*diff(y(x),x)-(2+35*x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {\left (1+\frac {1}{2} x^{2}+\frac {1}{4} x^{4}\right ) \left (x^{{3}/{4}} c_2 +c_1 \right )}{\sqrt {x}}+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 52

AsymptoticDSolveValue[8*x^2*(2-x^2)*D[y[x],{x,2}]+2*x*(10-21*x^2)*D[y[x],x]-(2+35*x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt [4]{x} \left (\frac {x^4}{4}+\frac {x^2}{2}+1\right )+\frac {c_2 \left (\frac {x^4}{4}+\frac {x^2}{2}+1\right )}{\sqrt {x}} \]