12.15.1 problem Example 7.6.1 page 367

Internal problem ID [1999]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS II. Exercises 7.6. Page 374
Problem number : Example 7.6.1 page 367
Date solved : Monday, January 27, 2025 at 05:40:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 48

Order:=6; 
dsolve(x^2*(1-2*x+x^2)*diff(y(x),x$2)-x*(3+x)*diff(y(x),x)+(4+x)*y(x)=0,y(x),type='series',x=0);
 
\[ y = x^{2} \left (\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1+5 x +17 x^{2}+\frac {143}{3} x^{3}+\frac {355}{3} x^{4}+\frac {4043}{15} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (\left (-3\right ) x -\frac {29}{2} x^{2}-\frac {859}{18} x^{3}-\frac {4693}{36} x^{4}-\frac {285181}{900} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 118

AsymptoticDSolveValue[x^2*(1-2*x+x^2)*D[y[x],{x,2}]-x*(3+x)*D[y[x],x]+(4+x)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {4043 x^5}{15}+\frac {355 x^4}{3}+\frac {143 x^3}{3}+17 x^2+5 x+1\right ) x^2+c_2 \left (\left (-\frac {285181 x^5}{900}-\frac {4693 x^4}{36}-\frac {859 x^3}{18}-\frac {29 x^2}{2}-3 x\right ) x^2+\left (\frac {4043 x^5}{15}+\frac {355 x^4}{3}+\frac {143 x^3}{3}+17 x^2+5 x+1\right ) x^2 \log (x)\right ) \]