Internal
problem
ID
[1640]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
12
Date
solved
:
Tuesday, March 04, 2025 at 12:58:14 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
With initial conditions
ode:=x^2*diff(y(x),x)+2*x*y(x) = y(x)^3; ic:=y(1) = 1/2*2^(1/2); dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],x]+2*x*y[x]==y[x]^3; ic=y[1]==1/Sqrt[2]; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + 2*x*y(x) - y(x)**3,0) ics = {y(1): sqrt(2)/2} dsolve(ode,func=y(x),ics=ics)