12.15.57 problem 58

Internal problem ID [2055]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS II. Exercises 7.6. Page 374
Problem number : 58
Date solved : Monday, January 27, 2025 at 05:41:12 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} \left (1+x \right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (1+x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 40

Order:=6; 
dsolve(4*x^2*(1+x)*diff(y(x),x$2)+8*x^2*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \sqrt {x}\, \left (-x^{5}+x^{4}-x^{3}+x^{2}-x +1\right ) \left (c_2 \ln \left (x \right )+c_1 \right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 64

AsymptoticDSolveValue[4*x^2*(1+x)*D[y[x],{x,2}]+8*x^2*D[y[x],x]+(1+x)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (-x^5+x^4-x^3+x^2-x+1\right )+c_2 \sqrt {x} \left (-x^5+x^4-x^3+x^2-x+1\right ) \log (x) \]