12.15.64 problem 65

Internal problem ID [2062]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS II. Exercises 7.6. Page 374
Problem number : 65
Date solved : Monday, January 27, 2025 at 05:41:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 32

Order:=6; 
dsolve(9*x^2*(1+x+x^2)*diff(y(x),x$2)+3*x*(1+7*x+13*x^2)*diff(y(x),x)+(1+4*x+25*x^2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = x^{{1}/{3}} \left (-x^{4}+x^{3}-x +1\right ) \left (c_2 \ln \left (x \right )+c_1 \right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.010 (sec). Leaf size: 48

AsymptoticDSolveValue[9*x^2*(1+x+x^2)*D[y[x],{x,2}]+3*x*(1+7*x+13*x^2)*D[y[x],x]+(1+4*x+25*x^2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt [3]{x} \left (-x^4+x^3-x+1\right )+c_2 \sqrt [3]{x} \left (-x^4+x^3-x+1\right ) \log (x) \]