Internal
problem
ID
[1698]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Exact
equations.
Section
2.5
Page
79
Problem
number
:
19
Date
solved
:
Tuesday, March 04, 2025 at 01:35:13 PM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=-4*cos(x)*y(x)+4*sin(x)*cos(x)+sec(x)^2+(4*y(x)-4*sin(x))*diff(y(x),x) = 0; ic:=y(1/4*Pi) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=(-4*y[x]*Cos[x]+4*Sin[x]*Cos[x]+Sec[x]^2)+(4*y[x]-4*Sin[x])*D[y[x],x]==0; ic=y[Pi/4]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((4*y(x) - 4*sin(x))*Derivative(y(x), x) - 4*y(x)*cos(x) + 4*sin(x)*cos(x) + cos(x)**(-2),0) ics = {y(pi/4): 0} dsolve(ode,func=y(x),ics=ics)