Internal
problem
ID
[1764]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
8
Date
solved
:
Tuesday, March 04, 2025 at 01:41:54 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(4*x^2+2)*y(x) = 8*exp(-x*(x+2)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2+2)*y[x]==8*Exp[-x*(x+2)]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x) + (4*x**2 + 2)*y(x) + Derivative(y(x), (x, 2)) - 8*exp(-x*(x + 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*y(x) + Derivative(y(x), x) + y(x)/(2*x) - 2*exp(-x**2 - 2*x)/x + Derivative(y(x), (x, 2))/(4*x) cannot be solved by the factorable group method