12.9.17 problem 17

Internal problem ID [1773]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number : 17
Date solved : Tuesday, March 04, 2025 at 01:42:01 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y&=4 x^{2} \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x^{2} \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 20
ode:=x^2*diff(diff(y(x),x),x)-5*x*diff(y(x),x)+8*y(x) = 4*x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2} \left (x^{2} c_2 -2 \ln \left (x \right )+c_1 -1\right ) \]
Mathematica. Time used: 0.015 (sec). Leaf size: 23
ode=x^2*D[y[x],{x,2}]-5*x*D[y[x],x]+8*y[x]==4*x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^2 \left (c_2 x^2-2 \log (x)-1+c_1\right ) \]
Sympy. Time used: 0.270 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x**2 - 5*x*Derivative(y(x), x) + 8*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} \left (C_{1} + C_{2} x^{2} - 2 \log {\left (x \right )}\right ) \]