12.19.14 problem section 9.3, problem 14

Internal problem ID [2161]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undetermined Coefficients for Higher Order Equations. Page 495
Problem number : section 9.3, problem 14
Date solved : Monday, January 27, 2025 at 05:42:56 AM
CAS classification : [[_high_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-2 y&=-3 \,{\mathrm e}^{2 x} \left (11+12 x \right ) \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 35

dsolve(diff(y(x),x$4)+3*diff(y(x),x$3)+diff(y(x),x$2)-3*diff(y(x),x)-2*y(x)=-3*exp(2*x)*(11+12*x),y(x), singsol=all)
 
\[ y = {\mathrm e}^{-2 x} \left (\left (1-x \right ) {\mathrm e}^{4 x}+c_1 \,{\mathrm e}^{3 x}+\left (c_4 x +c_3 \right ) {\mathrm e}^{x}+c_2 \right ) \]

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 43

DSolve[D[y[x],{x,4}]+3*D[y[x],{x,3}]+D[y[x],{x,2}]-3*D[y[x],x]-2*y[x]==-3*Exp[2*x]*(11+12*x),y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-2 x} \left (-e^{4 x} (x-1)+e^x (c_3 x+c_2)+c_4 e^{3 x}+c_1\right ) \]