Internal
problem
ID
[2247]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.4,
constant
coefficient
homogeneous
system.
Page
540
Problem
number
:
section
10.4,
problem
9
Date
solved
:
Monday, January 27, 2025 at 05:44:04 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.053 (sec). Leaf size: 66
dsolve([diff(y__1(t),t)=-6*y__1(t)-4*y__2(t)-8*y__3(t),diff(y__2(t),t)=-4*y__1(t)-0*y__2(t)-4*y__3(t),diff(y__3(t),t)=-8*y__1(t)-4*y__2(t)-6*y__3(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 116
DSolve[{D[ y1[t],t]==-6*y1[t]-4*y2[t]-8*y3[t],D[ y2[t],t]==-4*y1[t]-0*y2[t]-4*y3[t],D[ y1[t],t]==-8*y1[t]-4*y2[t]-6*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]