Internal
problem
ID
[1878]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.2
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
I.
Exercises
7.2.
Page
329
Problem
number
:
26
Date
solved
:
Tuesday, March 04, 2025 at 01:45:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(2*x^2+4*x+5)*diff(diff(y(x),x),x)-20*(1+x)*diff(y(x),x)+60*y(x) = 0; ic:=y(-1) = 3, D(y)(-1) = -3; dsolve([ode,ic],y(x),type='series',x=-1);
ode=(2*x^2+4*x+5)*D[y[x],{x,2}]-20*(x+1)*D[y[x],x]+60*y[x]==0; ic={y[-1]==3,Derivative[1][y][-1]==-3}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-20*x - 20)*Derivative(y(x), x) + (2*x**2 + 4*x + 5)*Derivative(y(x), (x, 2)) + 60*y(x),0) ics = {y(-1): 3, Subs(Derivative(y(x), x), x, -1): -3} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-1,n=6)