12.12.26 problem 31

Internal problem ID [1880]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 31
Date solved : Tuesday, March 04, 2025 at 01:45:34 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 x y^{\prime }+2 \alpha y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 55
Order:=6; 
ode:=diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*alpha*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\alpha \,x^{2}+\frac {\alpha \left (\alpha -2\right ) x^{4}}{6}\right ) y \left (0\right )+\left (x -\frac {\left (\alpha -1\right ) x^{3}}{3}+\frac {\left (\alpha ^{2}-4 \alpha +3\right ) x^{5}}{30}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 78
ode=D[y[x],{x,2}]-2*x*D[y[x],x]+2*\[Alpha]*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {\alpha ^2 x^5}{30}-\frac {2 \alpha x^5}{15}+\frac {x^5}{10}-\frac {\alpha x^3}{3}+\frac {x^3}{3}+x\right )+c_1 \left (\frac {\alpha ^2 x^4}{6}-\frac {\alpha x^4}{3}-\alpha x^2+1\right ) \]
Sympy. Time used: 0.787 (sec). Leaf size: 46
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
y = Function("y") 
ode = Eq(2*Alpha*y(x) - 2*x*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {\mathrm {A}^{2} x^{4}}{6} - \frac {\mathrm {A} x^{4}}{3} - \mathrm {A} x^{2} + 1\right ) + C_{1} x \left (- \frac {\mathrm {A} x^{2}}{3} + \frac {x^{2}}{3} + 1\right ) + O\left (x^{6}\right ) \]