12.22.11 problem section 10.5, problem 11

Internal problem ID [2264]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 10 Linear system of Differential equations. Section 10.5, constant coefficient homogeneous system II. Page 555
Problem number : section 10.5, problem 11
Date solved : Monday, January 27, 2025 at 05:44:17 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}y_{1} \left (t \right )&=4 y_{1} \left (t \right )-2 y_{2} \left (t \right )-2 y_{3} \left (t \right )\\ \frac {d}{d t}y_{2} \left (t \right )&=-2 y_{1} \left (t \right )+3 y_{2} \left (t \right )-y_{3} \left (t \right )\\ \frac {d}{d t}y_{3} \left (t \right )&=2 y_{1} \left (t \right )-y_{2} \left (t \right )+3 y_{3} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.059 (sec). Leaf size: 68

dsolve([diff(y__1(t),t)=4*y__1(t)-2*y__2(t)-2*y__3(t),diff(y__2(t),t)=-2*y__1(t)+3*y__2(t)-1*y__3(t),diff(y__3(t),t)=2*y__1(t)-1*y__2(t)+3*y__3(t)],singsol=all)
 
\begin{align*} y_{1} \left (t \right ) &= c_2 \,{\mathrm e}^{2 t}+c_3 \,{\mathrm e}^{4 t} \\ y_{2} \left (t \right ) &= -2 c_3 \,{\mathrm e}^{4 t} t +c_1 \,{\mathrm e}^{4 t}+\frac {3 c_2 \,{\mathrm e}^{2 t}}{2} \\ y_{3} \left (t \right ) &= 2 c_3 \,{\mathrm e}^{4 t} t -\frac {c_2 \,{\mathrm e}^{2 t}}{2}-c_1 \,{\mathrm e}^{4 t} \\ \end{align*}

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 126

DSolve[{D[ y1[t],t]==4*y1[t]-2*y2[t]-2*y3[t],D[ y2[t],t]==-2*y1[t]+3*y2[t]-1*y3[t],D[ y3[t],t]==2*y1[t]-1*y2[t]+3*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {y1}(t)\to e^{2 t} \left ((c_1-c_2-c_3) e^{2 t}+c_2+c_3\right ) \\ \text {y2}(t)\to \frac {1}{2} \left (3 (c_2+c_3) e^{2 t}-e^{4 t} (4 (c_1-c_2-c_3) t+c_2+3 c_3)\right ) \\ \text {y3}(t)\to -\frac {1}{2} e^{2 t} \left (-e^{2 t} (4 (c_1-c_2-c_3) t+c_2+3 c_3)+c_2+c_3\right ) \\ \end{align*}