Internal
problem
ID
[1890]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.2
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
I.
Exercises
7.2.
Page
329
Problem
number
:
43
Date
solved
:
Tuesday, March 04, 2025 at 01:45:43 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=(-x^6+1)*diff(diff(y(x),x),x)-12*x^5*diff(y(x),x)-30*x^4*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1-x^6)*D[y[x],{x,2}]-12*x^5*D[y[x],x]-30*x^4*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-12*x**5*Derivative(y(x), x) - 30*x**4*y(x) + (1 - x**6)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)