Internal
problem
ID
[1935]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.3
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
II.
Exercises
7.3.
Page
338
Problem
number
:
43
Date
solved
:
Tuesday, March 04, 2025 at 01:46:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(1+x)*diff(diff(y(x),x),x)+(2*x^2-3*x+1)*diff(y(x),x)-(-4+x)*y(x) = 0; ic:=y(1) = -2, D(y)(1) = 3; dsolve([ode,ic],y(x),type='series',x=1);
ode=(1+x)*D[y[x],{x,2}]+(1-3*x+x^2)*D[y[x],x]-(x-4)*y[x]==0; ic={y[1]==-2,Derivative[1][y][1]==3}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((4 - x)*y(x) + (x + 1)*Derivative(y(x), (x, 2)) + (2*x**2 - 3*x + 1)*Derivative(y(x), x),0) ics = {y(1): -2, Subs(Derivative(y(x), x), x, 1): 3} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=6)